What039s forskjellen mellom flytte gjennomsnittlig og vektet glidende gjennomsnitt Et 5-års glidende gjennomsnitt, basert på prisene ovenfor, ville bli beregnet ved hjelp av følgende formel: På grunnlag av ligningen ovenfor var gjennomsnittsprisen over perioden som er oppført ovenfor, 90,66. Bruk av bevegelige gjennomsnitt er en effektiv metode for å eliminere sterke prisfluktuasjoner. Nøkkelbegrensningen er at datapunkter fra eldre data ikke veier noe annerledes enn datapunkter nær begynnelsen av datasettet. Dette er hvor vektede glidende gjennomsnitt kommer til spill. Veidede gjennomsnitt gir tyngre vekting til mer gjeldende datapunkter siden de er mer relevante enn datapunkter i den fjerne fortiden. Summen av vektingen skal legge til opptil 1 (eller 100). Når det gjelder det enkle glidende gjennomsnittet, er vektene fordelt like mye, og derfor er de ikke vist i tabellen ovenfor. Avsluttende pris på AAPLWeighted Moving Averages: Grunnleggende I løpet av årene har teknikere funnet to problemer med det enkle glidende gjennomsnittet. Det første problemet ligger i tidsrammen for det bevegelige gjennomsnittet (MA). De fleste tekniske analytikere tror at prisaksjonen. Åpne eller avsluttende aksjekurs, er ikke nok til å avhenge av riktig forutsi kjøp eller salg av signaler fra MAs crossover-handlingen. For å løse dette problemet, tilordner analytikere nå mer vekt til de nyeste prisdataene ved å bruke det eksponensielt glattede glidende gjennomsnittet (EMA). (Lær mer om å utforske det eksponentielt veide flytende gjennomsnitt.) Et eksempel For eksempel, ved hjelp av en 10-dagers MA, ville en analytiker ta sluttprisen på den tiende dagen og multiplisere dette nummeret med 10, den niende dagen med ni, den åttende dag med åtte og så videre til den første av MA. Når summen er blitt bestemt, vil analytikeren da dele tallet ved tilsetning av multiplikatorene. Hvis du legger til multiplikatorene i 10-dagers MA-eksemplet, er tallet 55. Denne indikatoren er kjent som det lineært vektede glidende gjennomsnittet. (For beslektet lesing, sjekk ut enkle bevegelige gjennomsnitt, gjør trender stående ut.) Mange teknikere er fast troende på det eksponensielt glattede glidende gjennomsnittet (EMA). Denne indikatoren har blitt forklart på så mange forskjellige måter at det forveksler både studenter og investorer. Kanskje den beste forklaringen kommer fra John J. Murphys tekniske analyse av finansmarkedene, (publisert av New York Institute of Finance, 1999): Det eksponentielt glattede glidende gjennomsnittet adresserer begge problemene forbundet med det enkle glidende gjennomsnittet. For det første tilordner det eksponentielt glatte gjennomsnittet en større vekt til nyere data. Derfor er det et vektet glidende gjennomsnitt. Men mens den tilordner mindre betydning for tidligere prisdata, inkluderer den i beregningen alle dataene i instrumentets levetid. I tillegg er brukeren i stand til å justere vektingen for å gi større eller mindre vekt til den siste dagsprisen, som legges til en prosentandel av verdien for tidligere dager. Summen av begge prosentverdiene legger til 100. For eksempel kan den siste dagens pris tildeles en vekt på 10 (.10), som legges til den forrige dagens vekt på 90 (.90). Dette gir den siste dagen 10 av totalvekten. Dette ville være tilsvarer et 20-dagers gjennomsnitt, ved å gi den siste dagens pris en mindre verdi på 5 (.05). Figur 1: Eksponentielt glatt flyttende gjennomsnitt Ovennevnte diagram viser Nasdaq Composite Index fra den første uken i august 2000 til 1. juni 2001. Som du tydeligvis kan se, er EMA, som i dette tilfellet bruker sluttprisdataene over en 9-dagers periode, har bestemte salgssignaler den 8. september (merket med en svart nedpilt). Dette var dagen da indeksen brøt under 4000-nivået. Den andre svarte pilen viser et annet nedre ben som teknikerne faktisk forventer. Nasdaq kunne ikke generere nok volum og interesse fra detaljhandlerne til å bryte 3000 mark. Derefter dør du ned igjen til bunnen ut på 1619.58 på 4. april. Opptrenden av 12. april er markert med en pil. Her stengte indeksen på 1961,46, og teknikere begynte å se institusjonelle fondforvaltere begynner å hente opp gode kjøp som Cisco, Microsoft og noen av energirelaterte problemstillinger. (Les våre relaterte artikler: Flytte gjennomsnittlige konvolutter: Raffinere et populært handelsverktøy og flytte gjennomsnittlig sprette.) Frexit kort for quotFrench exitquot er en fransk spinoff av begrepet Brexit, som dukket opp da Storbritannia stemte til. En ordre som er plassert hos en megler som kombinerer funksjonene til stoppordre med grensene. En stoppordre vil. En finansieringsrunde hvor investorer kjøper aksjer fra et selskap til lavere verdsettelse enn verdsettelsen plassert på. En økonomisk teori om total utgifter i økonomien og dens effekter på produksjon og inflasjon. Keynesian økonomi ble utviklet. En beholdning av en eiendel i en portefølje. En porteføljeinvestering er laget med forventning om å tjene en avkastning på den. Dette. Et forhold utviklet av Jack Treynor som måler avkastning opptjent i overkant av det som kunne ha blitt opptjent på en risikofri. I praksis vil det glidende gjennomsnittet gi et godt estimat av gjennomsnittet av tidsserien hvis gjennomsnittet er konstant eller sakte endring. Ved konstant gjennomsnitt vil den største verdien av m gi de beste estimatene for det underliggende gjennomsnittet. En lengre observasjonsperiode vil gjennomsnittlig utvirke virkningen av variabilitet. Formålet med å gi en mindre m er å la prognosen svare på en endring i den underliggende prosessen. For å illustrere foreslår vi et datasett som inkorporerer endringer i det underliggende gjennomsnittet av tidsseriene. Figuren viser tidsseriene som brukes til illustrasjon sammen med den gjennomsnittlige etterspørselen fra hvilken serien ble generert. Middelet begynner som en konstant ved 10. Begynner på tid 21, øker den med en enhet i hver periode til den når verdien av 20 ved tid 30. Da blir det konstant igjen. Dataene blir simulert ved å legge til i gjennomsnitt, en tilfeldig støy fra en Normal-fordeling med null-middel og standardavvik 3. Resultatene av simuleringen avrundes til nærmeste heltall. Tabellen viser de simulerte observasjonene som brukes til eksemplet. Når vi bruker bordet, må vi huske at det til enhver tid bare er kjent med tidligere data. Estimatene til modellparameteren, for tre forskjellige verdier av m, vises sammen med gjennomsnittet av tidsseriene i figuren under. Figuren viser gjennomsnittlig glidende gjennomsnittlig beregning av gjennomsnittet hver gang og ikke prognosen. Prognosene ville skifte de bevegelige gjennomsnittskurver til høyre etter perioder. En konklusjon er umiddelbart tydelig fra figuren. For alle tre estimatene ligger det glidende gjennomsnittet bak den lineære trenden, idet laget øker med m. Laget er avstanden mellom modellen og estimatet i tidsdimensjonen. På grunn av lavet undervurderer det bevegelige gjennomsnittet observasjonene ettersom gjennomsnittet øker. Forskjellerens forspenning er forskjellen på en bestemt tid i middelverdien av modellen og middelverdien forutsatt av det bevegelige gjennomsnittet. Forspenningen når gjennomsnittet øker er negativt. For et avtagende middel er forspenningen positiv. Forsinkelsen i tid og bias innført i estimatet er funksjoner av m. Jo større verdien av m. jo større størrelsen på lag og forspenning. For en kontinuerlig økende serie med trend a. verdiene av lag og forspenning av estimatoren av middelet er gitt i ligningene nedenfor. Eksempelkurverne stemmer ikke overens med disse ligningene fordi eksempelmodellen ikke kontinuerlig øker, men det begynner som en konstant, endrer seg til en trend og blir konstant igjen. Også eksempelkurvene påvirkes av støyen. Den bevegelige gjennomsnittlige prognosen for perioder inn i fremtiden er representert ved å flytte kurvene til høyre. Forsinkelsen og forspenningen øker proporsjonalt. Ligningene nedenfor angir lag og forspenning av prognoseperioder i fremtiden sammenlignet med modellparametrene. Igjen, disse formlene er for en tidsserie med en konstant lineær trend. Vi bør ikke bli overrasket over dette resultatet. Den bevegelige gjennomsnittlige estimatoren er basert på antagelsen om konstant gjennomsnitt, og eksemplet har en lineær trend i gjennomsnittet i en del av studieperioden. Siden sanntidsserier sjelden vil adlyde forutsetningene til en hvilken som helst modell, bør vi være forberedt på slike resultater. Vi kan også konkludere fra figuren at variasjonen av støyen har størst effekt for mindre m. Estimatet er mye mer flyktig for det bevegelige gjennomsnittet på 5 enn det bevegelige gjennomsnittet på 20. Vi har de motstridende ønskene om å øke m for å redusere effekten av variabilitet på grunn av støyen, og å redusere m for å gjøre prognosen mer lydhør for endringer i gjennomsnitt. Feilen er forskjellen mellom de faktiske dataene og den forventede verdien. Hvis tidsseriene er virkelig en konstant verdi, er den forventede verdien av feilen null og variansen av feilen består av et begrep som er en funksjon av og et andre begrep som er variansen av støyen. Første term er variansen av gjennomsnittet estimert med en prøve av m observasjoner, forutsatt at data kommer fra en befolkning med konstant gjennomsnitt. Denne termen er minimert ved å gjøre m så stor som mulig. Et stort m gjør prognosen uansvarlig for en endring i den underliggende tidsserien. For å gjøre prognosen lydhør for endringer, ønsker vi m så liten som mulig (1), men dette øker feilvariasjonen. Praktisk prognose krever en mellomverdi. Forecasting with Excel Forecasting-tillegget implementerer de bevegelige gjennomsnittlige formlene. Eksempelet nedenfor viser analysen som ble levert av tillegget for prøvedataene i kolonne B. De første 10 observasjonene er indeksert -9 til 0. Sammenlignet med tabellen over, forskyves periodindeksene med -10. De første ti observasjonene gir oppstartsverdiene for estimatet og brukes til å beregne det bevegelige gjennomsnittet for perioden 0. MA (10) kolonnen (C) viser de beregnede bevegelige gjennomsnittene. Den bevegelige gjennomsnittsparameteren m er i celle C3. Fore (1) kolonne (D) viser en prognose for en periode inn i fremtiden. Forespørselsintervallet er i celle D3. Når prognoseperioden endres til et større tall, blir tallene i Fore-kolonnen flyttet ned. Err-kolonnen (E) viser forskjellen mellom observasjonen og prognosen. For eksempel er observasjonen ved tidspunkt 1 6. Den prognostiserte verdien fra det bevegelige gjennomsnittet ved tid 0 er 11,1. Feilen er da -5,1. Standardavviket og gjennomsnittlig avvik (MAD) beregnes i henholdsvis celler E6 og E7.
No comments:
Post a Comment